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Abstract. The ITER cryodistribution system provides the supercritical Helium (SHe) forced 
flow cooling to the magnet system using cold circulators. The cold circulators are located in 
each of five separate auxiliary cold boxes planned for use in the facility.  Barber-Nichols Inc. 
has been awarded a contract from ITER-India for engineering, manufacture and testing of the 
Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively 
tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic 
Energy Agency’s (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates 
features and technical requirements which Barber-Nichols has utilized when supplying helium 
cold circulators worldwide over a period of 35 years.  Features include a vacuum- jacketed 
hermetically sealed design with a very low helium leak rate, a heat shield for use with both 
nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic 
efficiency over 70%, and impeller design features for high efficiency. The cold circulator will 
be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed 
monitoring are integrated into a compact package on the rotating assembly with operation and 
health monitoring in a multi-drop PROFIBUS communication environment using an electrical 
cabinet with critical features and full local and network PLC interface and control.  For the 
testing in Japan and eventual installation in Europe, the cold circulator must be certified to the 
Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the 
European Pressure Equipment Directive (PED) including Essential Safety Requirements 
(ESR).  The test methodology utilized at Barber-Nichols’ facility and the resulting test data, 
validating the high efficiency of the TF Cold Circulator across a broad operating range, are 
important features of this paper. 

1.  Introduction 
Extended shaft cryogenic cold circulators are used in the cryogenics industry for many common 
applications involving liquid nitrogen, argon, hydrogen, and helium and supercritical helium. 
Typically, hydrogen and helium applications involve the use of vacuum jackets and optimized shaft 
extensions to reduce heat leak to the process fluid.  Equipment common to cold circulator use include 
coldboxes and cryostats of many sizes and features. 

 
For the ITER cryodistribution system, there will be five auxiliary cold boxes (Cryopump - CP, 

Central Solenoid - CS, Correction Coil - PF&CC, Structure - ST, and Toroidal Field Magnet - TF), 
each requiring a cold circulator to provide forced flow cooling of the magnet system with supercritical 
helium (SHe).  The TF Cold Circulator is the subject of this paper. The performance requirements for 
the TF Cold Circulator are demanding with 70% guaranteed efficiency over a broad range of flow.  
Figure 1 shows a simplification of the ITER cryogenic system with SHe cold circulators. 

2.  Cold Circulator Features 
Typical requirements for applications involving Cold Circulators include:  

 
Vacuum Jacket 
Hermetic Design 
Extended Shaft 
Inducer 
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Easily Removable Rotating Assembly 
Motor Winding Temperature Sensors 
Extended Shaft Heat Station (Thermalization) for reduced Heat Leak 
Long Life Bearings using Low Vapor Pressure Cryogenic Bearing Greases 
Speed Pick-Up and Indication 
Vibration Sensors 
Speed Control by Variable Frequency Drive (VFD) 
Radiation Hardened including ancillary equipment (Sensors, Cables etc.) 
High Working Pressures (MAWP) 
Remote control via a specific communication protocol 
Guaranteed design & off-design performance and efficiency 
Anti-Icing Features 
Hour Usage Meter 
Start-Stop Counter 
Remote and Local PLC Control 
Anti-Thermal Acoustic Oscillation (TAO) Features 
Instrumentation and Control Cabinet for integrated power and control interlock 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Simplified ITER Cryogenic System (Courtesy of ITER-India). 

2.1 ITER TF Cold Circulator Requirements 
Barber-Nichols has been manufacturing cold circulators for over 35 years to these typical 
requirements and features.  The program for the ITER TF Cold Circulator is the first time that Barber-
Nichols has had to implement virtually all of these features into a cold circulator design.  A photo of 
the completed ITER TF Cold Circulator is shown in Figure 2 and 3: 
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Figure 2.  ITER TF Cold Circulator Features - Vacuum Housing Removed. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  ITER TF Cold Circulator Features. 

3.  TF Cold Circulator Performance 
The focus subject of this paper is the approach used to achieve a 70% guaranteed efficiency threshold 
over a wide operating range and the preliminary test results of the TF Cold Circulator design.  
Problems and issues were encountered and overcome during preliminary testing at Barber-Nichols’ 
facility to confirm that the required performance guarantee efficiency points have been met.  Further, 
the test results validate the design approach taken, which has been a first for Barber-Nichols to apply 
these concepts to a Supercritical Helium, cryogenic, vacuum-jacketed, extended shaft cold circulator.  
The methods used improved the performance potential of the full emission impeller and volute.  
These concepts used are typically applied in rocket turbopumps.  Figure 4 performance curves show 
that the five (5) operational guarantee points have been preliminarily met after design, testing, and 
hardware mitigations at BNI’s facility. 
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Figure 4. Preliminary Test Results for ITER TF Cold Circulator. 
 

4.  Overview of Principles Used in the Cold Circulator Design 
Specific Speed, Ns, is defined as 
 

Ns
N Q

H 3 4          (1) 

where N is the shaft speed in RPM, Q is the pump volumetric flow in gallons per minute (GPM), and 
H the pump head rise in feet. 

 
The head and flow of the pump are expressed in terms of their non-dimensional values, head 

coefficient ( ) and flow coefficient ( ). This allows test data to be easily used in dimensionless 
analysis and to be used to characterize a pump or cold circulator which will be operated at different 
shaft speeds, and for analyzing changing cold circulator conditions and resulting performance.  TF 
Cold Circulator flow coefficient is defined as the ratio of the impeller discharge meridional velocity 
Cm to the impeller tip speed, U.  Pump head coefficient is defined as the pump head rise, H, 
normalized by the impeller tip speed and gravitational constant. 

cm

U
                                                          (2) 

                                                         ( )

 

TF Cold Circulator efficiency, , is calculated from the TF Cold Circulator shaft power, Ps, 
head rise, H, mass flow, m-dot, and unit conversion factor, . 

       =  m-dot x H       (4) 
                  Ps x  
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Pumps are generally designed to achieve peak efficiency at the rated design or normal 
operation flow coefficient.  Operation at other than the design flow coefficient (off-design operation) 
results in a decrease in efficiency (Figure 5).  The steepness of the efficiency curve drop-off tends to 
increase as pump geometry and performance variables are optimized on very high performing 
machines such as rocket turbopumps. 

Figure 5.  Typical Pump Performance Curves from Huzel and Huang [1]. 
 

The design, analysis, and test of the TF Cold Circulator required broadening the effective 
efficiency range beyond traditional applications. The end result is shown in Figure 4 where the best 
efficiency point (BEP) does not occur at what is specified as the ‘Normal’ operating point which is 
usually treated as the design point and the BEP. 

The TF Cold Circulator design effort had to achieve a total to static stage efficiency of 70% 
or greater from the Normal Flow point with a flow coefficient of 0.140 up to a flow coefficient 41% 
higher for the Maximum Flow point (  = 0.197). 

Expansion of the cold circulator’s operating range by means of enlarging the discharge 
volute throat provided a simple approach along with ease of implementation to provide greater flow 
range for the higher mass flow operation.  The design approach increased the risk of flow separation 
at low flow and at the Nominal condition.  A depiction of a typical centrifugal volute throat, a key 
area of optimization in the TF Cold Circulator design, is shown in Figure 6: 

Figure 6.  Typical Centrifugal Pump Volute as depicted in Brennen [2]. 
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Initial speed selection for the TF Cold Circulator was made to maximize the efficiency 
potential.  Pump specific speed, Ns, provides a convenient design parameter to assess the influence of 
pump speed on efficiency. 

Examination of representative specific speed versus efficiency curves indicated that good 
efficiency potential occurs at the selected shaft speed for the TF Cold Circulator design condition of 
8,000 RPM.  Based on the pump flow rate of 253 GPM (2.21 Kg/s) and a resulting Ns value of 1,531 
(in GPM, RPM, feet units), the BEP was be expected to be approximately 74%.  The value is to be 
corrected for expected conductive and convective heat leak. 

 

 

 

 

 

 

 
 

Figure 7.   Efficiency potential vs Ns for pumps of various flow rates as found in Japikse [3]. 
 
4.1 Impeller Design 
Trade studies to identify areas of impeller efficiency potential were performed with an internally 
developed 1-D pump design tool.  Barber-Nichols’ pump design tool employs distributed loss models 
utilizing correlations from BNI’s past experience, as well as based on the works of Balje [4], 
Pfleiderer [5], Brennen [2] and others.  The effects of discharge blade angle on efficiency were 
examined for volumetric flow and speed variations.  Discharge flow angle was optimized allowing the 
impeller to produce the required head.  The impeller optimization reduced skin friction losses through 
the impeller, increasing efficiency.  The optimized impeller discharge traded with the impeller 
passage diffusion factor as the factor approached its practical limit. There were associated pressure 
losses adversely impacting efficiency.  Mitigation to a fully optimized impeller design was also 
related to a discharge blade angle that posed manufacturing challenges.  The physical result of the 
impeller optimization based on Ns and the trade studies are shown in Figure 8.

 
 
 
 
 
 

Figure 8.  Impeller geometry based on Ns and trade studies. 

4.2 Volute Design  
The success of the chosen strategy for high efficiency over a wide flow range depended on the ability 
of BNI’s prediction tools to account for the off-design behavior of the volute.  In order to minimize 
the risk of flow separation in the volute, it is desired to increase the volute throat area by the minimum 
amount necessary to achieve the objective of near peak efficiency between flow coefficient ( ) values 
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of 0.140 (Normal) and 0.197 (Maximum Flow).  This effectively shifted the TF Cold Circulator BEP 
from the Normal Flow point to approximately 2.5 Kg/s. 
 

BNI accounted for the sudden expansion of the flow from the impeller discharge into the 
larger cross sectional area of the volute (the Borda-Carnot loss) and performed momentum mixing 
loss analysis to capture the loss of the fluid radial momentum.  BNI’s skin friction loss modeled the 
interaction of the fluid with the volute walls. The model output indicated acceptable efficiency at the 
desired high-end flow coefficient of 0.197 with the throat area increase.  With the throat area defined, 
the subsequent volute area schedule is defined by means of a conservation of angular momentum 
based methodology such as that found in Karassik [6]. 

4.3 Stage Design  
Although the interaction of impeller and volute had been modeled as one-dimensional, the detailed 
stage design and analysis was performed with computational fluid dynamics (CFD) to give higher 
fidelity definition to the interaction between the impeller and the volute. 

The ANSYS CFX solver is used for the stage simulations.  The mesh for the model for the 
TF Cold Circulator consists of unstructured tetrahedrons with approximately 5.7 million nodes with 
boundary layer inflation mesh.  A steady state solution with a frozen rotor stage boundary condition is 
used for the interface between the rotating impeller and the stationary volute housing.  Frozen rotor 
does not perform circumferential averaging of the flow field and is considered most appropriate for 
solutions with a large degree of asymmetry such as with the volute cut water, where there is a flow 
path nonconformity at the point the volute passage has rotated approximately 360 degrees around the 
impeller.  A total of 4 solutions over the desired flow coefficient range were performed. 

The streamlines through the pump volute are shown in Figure 9.  No areas of large 
recirculation are present and the flow appears well behaved.  The impeller in the figure is shaded with 
pressure contours. 

 

Figure 9.  Streamlines through the volute at the design condition. 
 

 

 

 

 

 

 

 
Figure 10.  Impeller mid-span velocity contours at the the design condition. 

 
In Figure 10, the velocity contours of the impeller are shown on the mid-span surface.  Note 

the low velocity regions present near the suction side of the main impeller blades (lighter shaded 
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regions).  Such velocity distributions are present in centrifugal pumps of all types and are caused by 
the interaction of the rotating channel fluid motion with centripetal force.  The goal is to prevent fluid 
recirculation from occurring.  Further analysis of the relative velocity vectors confirmed that the fluid 
is not recirculating, thus maintaining efficiency by minimizing flow angle deviation and pressure loss 
through the impeller. 
 
5.  Discussion of Test Results and Mitigations 
Testing of the TF Cold Circulator was conducted in BNI facilities using a cold nitrogen recirculation 
loop.  An electric motor with a variable frequency drive (VFD) was used to control the speed of the 
cold circulator.  Calibration of the motor assembly was done using a dynamometer. This allowed for 
accurate power measurements for calculation of the cold circulator efficiency based on the measured 
power, which allowed calculation of efficiency with equation (4). 

Test data results are shown in Figure 11 and Figure 12.  The cold circulator was tested at 
two different speeds and with two different values of the impeller front shroud labyrinth clearance. 
Figure 11 indicates that the head coefficient from the test data is lower than that predicted by both the 
1-D tool and by CFD analysis.  There is good agreement between the test data and predictions made 
for the highest values of flow coefficients, with greater divergence occurring as the flow coefficient 
values decrease.  The shape of the test data characteristic is similar to that of the CFD prediction, with 
a shallow, low slope from flow coefficient values of approximately 0.05 to 0.11.  This behavior 
appears to indicate flow separation in the volute and a lack of static pressure recovery.  As the flow 
increases and nears the design point, the test curve assumes a more positive slope suggesting that the 
volute is functioning as intended over these higher flow coefficient values.  Even though this behavior 
was a known risk due to the enlargement of the volute throat and was given due attention in BNI’s 
analysis, the magnitude of the volute performance shortfall was not accurately captured in the TF Cold 
Circulator Aero / Hydraulic design effort. 

From a predictive standpoint, it appears that while the 1-D and CFD are in relative 
agreement for all head coefficient values for flow coefficients near Normal design flow and higher, a 
marked divergence in head coefficient prediction for flow coefficients lower than the design point is 
present.  This appears to indicate that the 1-D tool is not able to fully predict the onset of flow 
separation in the volute and accurately predict the resulting performance impacts.  The CFD seems to 
capture the presence of separation because the CFD curve shape agrees with the test data. The CFD 
analysis appears to underestimate the impact on head. It is unknown if this is due to an unsteady 
simulation or if a mesh refinement in the volute would aid in the prediction accuracy. 

Test data taken at a larger value of impeller front shroud labyrinth seal clearance does not 
have a marked effect on the head coefficient performance.  This appears to be further evidence that at 
this clearance, the volute is failing to recover static pressure from the impeller discharge as opposed to 
a pressure loss influenced by the larger impeller shroud seal clearance. 
 

The efficiency data from Figure 12 shows that the desired objective was achieved, 
accommodating near peak efficiency from the range of flow coefficient of 0.140 to 0.197; an increase 
of 41% in flow coefficient with an efficiency reduction of 3 points from the BEP over this range.  In 
contrast, a range given by a flow coefficient reduction of 40% was considered (in the range of 0.085 
to 0.140), showing an efficiency reduction of up to 9 points. 
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Figure 11.  Head coefficient vs. flow coefficient results taken at two different speeds comparing values of 
impeller shroud clearance together with 1-D and CFD predictions. 

 
 

Figure 12.  Efficiency vs. flow coefficient results taken at two different speeds comparing and values of 
impeller shroud clearance together with 1-D and CFD predictions. 

 

5.1 Mitigation for Low Flow Coefficient Efficiency 
As BNI expected, the mitigation to the decrease in efficiency in the low flow range was to decrease 
the impeller front shroud leakage flow by decreasing the front shroud labyrinth seal clearance.   This 
change had a measurable and positive impact on the TF Cold Circulator efficiency.  The parasitic 
losses associated with the front shroud leakage were minimized by the change in the seal clearance. 
 

The efficiency predictions made from 1-D and CFD analysis agree well with the data at the 
Normal Flow coefficient value and above.  For flow coefficient values lower than design, both the 1-
D and CFD tools over predicted efficiency.  
 
6.  Summary and Conclusions 
Preliminary testing of the ITER TF Supercritical Helium Cold Circulator indicates that the machine 
will meet its primary design objective of 70% efficiency over a very broad range of flow.  Enlarging 
the volute throat above the nominal design value by a factor of 1.16 permits a large operating flow 
range near peak efficiency. 

As expected, the design methodology undertaken comes at the expense of the volute 
pressure recovery at lower than the design (Normal Flow) coefficient.  The test data obtained suggests 
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that great care must be taken in the analysis of the volute diffuser and to realize the potential for 
possible diffuser flow separation when looking to broaden cold circulator flow and peak efficiency. 

Detailed analysis of the impeller, impeller and volute interaction, and the diffuser geometry 
is recommended.  The successful results were supported by trade studies related to shaft speed 
evaluation of the specific speed parameter with variation of pump overall efficiency. These trades 
assisted in clarifying consideration of the impeller discharge blade angle and selection of the the 
design head coefficient ( ).  A volute loss model that considers the Borda-Carnot loss, momentum 
mixing loss, skin friction loss, and conical diffuser loss was used for the 1-D trade studies performed. 

The comparisons of the preliminary test data with the predictions made with 1-D and CFD 
analysis provide insights into sources of head loss as well as areas of analysis requiring further 
attention. 
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